Una varilla delgada con la forma de un arco de circunferencia de radio $R$ lleva una carga uniforme por unidad de longitud $\lambda$. El arco subtiende un ángulo total $2 \theta_{0}$, simétrico en torno al eje $x$, como se muestra en la Figura. Determine el campo eléctrico $\vec{E}$ en el origen 0.
Pregunta:
Una varilla delgada con la forma de un arco de circunferencia de radio $R$ lleva una carga uniforme por unidad de longitud $\lambda$. El arco subtiende un ángulo total $2 \theta_{0}$, simétrico en torno al eje $x$, como se muestra en la Figura. Determine el campo eléctrico $\vec{E}$ en el origen 0.
Datos:
Resolucion:
\[ \begin{aligned}
&d E_x=d E \cos \theta\\
&d E_x=\frac{1}{4 \pi \epsilon_0} \frac{d Q}{R^2} \cos \theta\\
&\quad \lambda=\frac{d Q}{d l} \Rightarrow d Q=\lambda d \ell\\
&\quad d l=R d \theta\\
&\quad d Q=\lambda R d \theta\\
&d E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda R d \theta}{R^2} \cos \theta\\
&d E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{R} \cos \theta d \theta\\
&E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{R} \int_{-\theta_0}^{\theta_0} \cos \theta d \theta
\end{aligned} \]
\[
\begin{aligned}
&E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{R}[\sin \theta]_{-\theta_0}^{\theta_0}\\
&E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{R}\left[\sin \theta_0-\sin \left(-\theta_0\right)\right]\\
&E_x=\frac{1}{4 \pi E_0} \frac{\lambda}{R}\left[\sin \theta_0-\left(-\sin \theta_0\right)\right]\\
&E_x=\frac{1}{4 \pi \varepsilon_0} \frac{\lambda}{R}\left(2 \sin \theta_0\right)\\
&E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{R} 2 \sin \theta_0 \\
&E_x=\frac{1}{2 \pi \epsilon_0} \frac{\lambda \sin \theta_0}{R}
\end{aligned}
\]
Comentarios
Publicar un comentario