Suponga que un alambre cargado de manera uniforme empieza en el punto 0 y se levanta verticalmente a lo largo del eje $y$ positivo hasta una longitud $l$. (a) Determine las componentes del campo eléctrico $E_{x}$ y $E_{y}$ en el punto $(x, 0)$. Esto es, calcule cerca de un extremo de un alambre largo en el plano perpendicular al alambre. (b) Si el alambre se extiende desde $y=0$ hasta $y=\infty$, de manera que $l=\infty$, demuestre que $\vec{E}$ forma un ángulo de $45^{\circ}$ con la horizontal para cualquier valor de $x$.

Pregunta:
Suponga que un alambre cargado de manera uniforme empieza en el punto 0 y se levanta verticalmente a lo largo del eje $y$ positivo hasta una longitud $l$. (a) Determine las componentes del campo eléctrico $E_{x}$ y $E_{y}$ en el punto $(x, 0)$. Esto es, calcule cerca de un extremo de un alambre largo en el plano perpendicular al alambre. (b) Si el alambre se extiende desde $y=0$ hasta $y=\infty$, de manera que $l=\infty$, demuestre que $\vec{E}$ forma un ángulo de $45^{\circ}$ con la horizontal para cualquier valor de $x$.

Datos:

Resolucion: alt text \[ \begin{aligned} &d E_x=d E \cos \theta\\ &d E_x=\frac{1}{4 \pi \epsilon_0} \frac{d Q}{r^2} \cos \theta\\ &\quad \lambda=\frac{d Q}{d y} \Rightarrow d Q=\lambda d y\\ &d E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda d y}{r^2} \cos \theta\\ &\quad\tan \theta=\frac{y}{x} \Rightarrow y=x \tan \theta\\ &\quad\frac{d y}{d \theta}=x\left(\tan ^2 \theta+1\right)\\ &\quad\frac{d y}{d \theta}=x \frac{1}{\cos ^2 \theta}=x \frac{r^2}{x^2}\\ &\quad dy=\frac{r^2}{x} d \theta\\ &d E_x=\frac{1}{4 \pi \epsilon_0} \lambda \frac{r^2}{x} \frac{1}{r^2} \cos \theta d \theta\\ &E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x} \int_0^{\theta_0} \cos \theta d \theta \end{aligned} \] \[ \begin{aligned} &E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x}[\sin \theta]_0^{\theta_0} \\ &E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x}\left(\sin \theta_0-\sin 0\right) \\ &E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x}\left(\sin \theta_0\right) \\ &\sin \theta_0=\frac{l}{\left(x^2+y^2\right)^{1 / 2}} \\ &E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda l}{x\left(x^2+y^2\right)^{1 / 2}} \\ &E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{\left(x^2+y^2\right)^{1 / 2}} \frac{l}{x} \end{aligned} \] \[ \begin{aligned} &\text { Por analogía }\\ &E_y=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x} \int_0^{\theta_0} \sin \theta d \theta\\ &E_y=\frac{1}{4\pi\epsilon_0} \frac{\lambda}{x}[-\cos \theta]_0^{\theta_0}\\ &E_y=\frac{1}{4\pi\epsilon_0}\frac{\lambda}{x}\left[-\cos \theta_0+\cos 0\right]\\ &E_y=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x}\left[1-\cos \theta_0\right]\\ &\qquad\cos \theta_0=\frac{x}{\left(x^2+y^2\right)^{1 / 2}}\\ &E_y=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x}\left[1-\frac{x}{\left(x^2+y^2\right)^{1 / 2}}\right] \end{aligned} \] \[ \begin{aligned} &E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x} \sin \frac{\pi}{2} \\ &E_x=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x} \\ &E_y=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x}\left[1-\cos \frac{\pi}{2}\right] \\ &E_y=\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x} \end{aligned} \] \[ \begin{aligned} \tan \theta &=\frac{E_y}{E_x}=\frac{\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x}}{\frac{1}{4 \pi \epsilon_0} \frac{\lambda}{x}} \\ \tan \theta &=1 \\ \theta &=\arctan (1) \\ \theta &=\frac{\pi}{4}=45^{\circ} \end{aligned} \]

Comentarios

Entradas populares de este blog

Ejercicio Resuelto 005 (Capacitancia y Dieléctricos)

Dos varillas delgadas idénticas con una longitud \(2 a\) tienen cargas iguales \(+Q\) uniformemente distribuidas a lo largo de sus longitudes. Las varillas yacen a lo largo del eje \(x\), con sus centros separados por una distancia \(b>2 a\) (ver figura). Demuestre que la magnitud de la fuerza ejercida por la varilla izquierda sobre la derecha está dada por \begin{equation*} \begin{aligned} F=\left(\frac{1}{4 \pi \epsilon_{0}} \frac{Q^{2}}{4 a^{2}}\right) \ln \left(\frac{b^{2}}{b^{2}-4 a^{2}}\right) \end{aligned} \end{equation*}

(a) Demuestre que para puntos a lo largo del eje de un dipolo (sobre la misma recta que contiene las cargas $+Q $ y $-Q)$, el campo eléctrico tiene una magnitud $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 p}{r^{3}}$ para $r \gg l$ (figura$)$, donde $r$ es la distancia del punto donde se evalúa el campo al centro del dipolo. (b) ¿En qué dirección apunta $\vec{E}$ ?