Suponga que un electrón que viaja con rapidez $\vec{v}_{0}$. Entra a un campo eléctrico uniforme $E$ que es perpendicular a $\vec{v}_{0}$ como se indica en la Figura. (a) Describa su movimiento dando la ecuación de su trayectoria mientras se mueve dentro del campo eléctrico. Ignore la gravedad. (b) ¿A qué ángulo dejarán los electrones el campo eléctrico uniforme al final de las placas paralelas (punto P)? Suponga que las placas miden $4.9 \mathrm{~cm}$ de longitud y que $E=5.0 \times 10^{3} \mathrm{~N} / \mathrm{C}$. Ignore los efectos de borde del campo.

Pregunta:
Suponga que un electrón que viaja con rapidez $\vec{v}_{0}$. Entra a un campo eléctrico uniforme $E$ que es perpendicular a $\vec{v}_{0}$ como se indica en la Figura. (a) Describa su movimiento dando la ecuación de su trayectoria mientras se mueve dentro del campo eléctrico. Ignore la gravedad. (b) ¿A qué ángulo dejarán los electrones el campo eléctrico uniforme al final de las placas paralelas (punto P)? Suponga que las placas miden $4.9 \mathrm{~cm}$ de longitud y que $E=5.0 \times 10^{3} \mathrm{~N} / \mathrm{C}$. Ignore los efectos de borde del campo. imagen pregunta

Datos:

Resolucion: imagen respuesta Por la Segunda Ley de Newton tenemos $$ \begin{aligned} &F=m a \\ &a_y=\frac{F}{m}=\frac{q E}{m}=\frac{-e E}{m_e} \end{aligned} $$ La posición en " $y$ " será (MRUV) $$ y=\frac{1}{2} a_y t^2=\frac{1}{2}\left(-\frac{e E}{m_e}\right) t^2 $$ $$ y=-\frac{1}{2} \frac{c E}{m_e} t^2 $$ Lu posición en " $x$ " será (MRU) $$ x=v_0 t \Rightarrow t=\frac{x}{v_0} $$ Reemplazando en la anterior $$ \begin{aligned} &y=-\frac{1}{2} \frac{e E}{m_e}\left(\frac{x^2}{v_0^2}\right) \\ &y=-\frac{1}{2} \frac{e E}{m_e v_0^2} x^2 \end{aligned} $$ \[ \begin{aligned} v_x &=v_0 \\ v_y &=v_{o y}+a_y t \\ v_y &=a_y t=\frac{e E}{m_e} \frac{x}{v_0} \\ \tan \theta &=\frac{v_y}{v_x} \\ \theta &=\arctan \left(\frac{v_y}{v x}\right)=\arctan \left(\frac{e E x}{m_e v_0} \frac{1}{v_0}\right) \\ \theta &=\arctan \left(\frac{e E x}{m_e v_0^2}\right) \\ \theta &=\arctan \left[\frac{\left(1.6 \times 10^{-19}\right)\left(5 \times 10^3\right)\left(4.9 \times 10^{-2}\right)}{\left(9.11 \times 10^{-31}\right) v_0^2}\right] \\ \theta &=\arctan \left(4.3 \times 10^{13} v_0^{-2}\right) \end{aligned} \]

Comentarios

Entradas populares de este blog

Ejercicio Resuelto 005 (Capacitancia y Dieléctricos)

Dos varillas delgadas idénticas con una longitud \(2 a\) tienen cargas iguales \(+Q\) uniformemente distribuidas a lo largo de sus longitudes. Las varillas yacen a lo largo del eje \(x\), con sus centros separados por una distancia \(b>2 a\) (ver figura). Demuestre que la magnitud de la fuerza ejercida por la varilla izquierda sobre la derecha está dada por \begin{equation*} \begin{aligned} F=\left(\frac{1}{4 \pi \epsilon_{0}} \frac{Q^{2}}{4 a^{2}}\right) \ln \left(\frac{b^{2}}{b^{2}-4 a^{2}}\right) \end{aligned} \end{equation*}

(a) Demuestre que para puntos a lo largo del eje de un dipolo (sobre la misma recta que contiene las cargas $+Q $ y $-Q)$, el campo eléctrico tiene una magnitud $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 p}{r^{3}}$ para $r \gg l$ (figura$)$, donde $r$ es la distancia del punto donde se evalúa el campo al centro del dipolo. (b) ¿En qué dirección apunta $\vec{E}$ ?